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When does the ε expansion work best?

N × Free scalar CFTUVy λijklϕ
iϕjϕkϕl

CFTIR

Zoo of new fixed points in
[Osborn, Stergiou; 17, 20] [Rychkov, Stergiou; 18]

[Codello, Safari, Vacca, Zanusso; 19, 20]

[Hogervorst, Toldo; 20]

1 When the UV is a tensor product of well understood CFTs

2 When ε is small

S1 =
N∑
i=1

S i
Ising + g

∫
ddx

∑
i<j

ϵiϵj

S2 =
N∑
i=1

S i
q−Potts + g

∫
d2x

∑
i<j

ϵiϵj

2 3 4

d or q
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Questions about these models

S1: Is fixed point in d = 3 more stable than O(3)? [Aharony; 73]

Yes. [Chester, Landry, Liu, Poland, Simmons-Duffin, Su, Vichi; 20]

S2: Is fixed point for q = 3 rational? [Dotsenko, Jacobsen, Lewis, Picco; 98]

h /∈ Q or c /∈ Q would say no. [Vafa; 88]

Rational Irrational

Only
Virasoro

Virasoro analytic bootstrap
[Collier, Gobeil, Maxfield, Perlmutter; 18]

Extended
chiral
algebra

Exact
methods

No known methods

No literature on irrational, unitary CFTs with discrete spectrum
and only Virasoro symmetry (irrational sigma models have higher
symmetry like N = 2)!
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Minimal models at large m

2 3 4

d or q

0.5 1

c

From c = 1− 6
m(m+1) and h(r ,s) =

[(m+1)r−ms]2−1
4m(m+1) ,

ϕi
(1,2) has weight

1
4 − O(m−1), ϕi

(1,3) has weight 1− O(m−1).

S =
N∑
i=1

S i
m + gϵ

∫
d2x N− 1

2

N∑
i=1

ϕi
(1,3) ←

∫
d2x ϵ

+ gσ

∫
d2x

(
N

4

)− 1
2 ∑
i<j<k<l

ϕi
(1,2)ϕ

j
(1,2)ϕ

k
(1,2)ϕ

l
(1,2) ←

∫
d2x σ
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Renormalization group

Use one loop conformal perturbation theory [Zamolodchikov; 87] .

βσ =
6

m
gσ − 4π

√
3

N
gσgϵ − 6π

(
N − 4

2

)(
N

4

)− 1
2

g2
σ

βϵ =
4

m
gϵ −

4π√
3N

g2
ϵ − 2π

√
3

N
g2
σ

For P = 3N4 − 53N3 + 357N2 − 1069N + 1194, Q = 3(N − 4)(N − 5),

(g∗
σ , g

∗
ϵ ) = (0, 0), (g∗

σ , g
∗
ϵ ) =

(
0,

2
√
3

mπ

)

(g∗
σ , g

∗
ϵ ) =

(
±
√
(N − 3)4

πm
√

2P(N)
,

√
3P(N)± Q(N)

πm
√

P(N)/N

)
.




Dimensions of σ, ϵ for N = 4 become ∆ = 2± 2
√
6

m .
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Minimal chiral symmetry implies irrationality

UV chiral algebra is VirN generated by T i .
IR chiral algebra is at least V̂ir generated by T̂ ≡

∑
i T

i .

∂̄T = bgV + O(g2)

Operator of weight (ℓ, 0) becomes long by eating (ℓ, 1) [Rychkov, Tan; 15] .

b2g2 ⟨V (z1)V (z2)⟩ =
〈
∂̄T (z1)∂̄T (z2)

〉
⇒ γT = b2g2

Anomalous dimension known in terms of b [Giombi, Kirilin; 16] .

bg ⟨V (z1)V (z2)⟩ =
〈
∂̄T (z1)V (z2)

〉
= g

∫
d2z

〈
∂̄T (z1)V (z2)σ(z)

〉
Agrees with two loop calculation [CB, Rastelli, Rychkov, Zan; 17] .
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Lifting of currents

T i goes with V i ≡
∑

(j<k<l )̸=i [∂ϕ
i ]ϕjϕkϕl − 1

4∂[ϕ
iϕjϕkϕl ] yielding

γ[T i − T i+1] = (g∗
σπ)

2 3

N − 1
.

Improve V̂ir ⊆W ⊂ VirN by checking SN singlets which are V̂ir
primaries at higher spin.

T4 |0⟩ =

∑
i

Li−4 −
5

3

∑
i

(Li−2)
2 +

18

N − 1

∑
i<j

Li−2L
j
−2

 |0⟩ ⇒
γ[T4] = (g∗

σπ)
2 5N + 22

2N(N − 1)

because rows of 1× 2 matrix
〈
T I
4V

J
3 σ
〉
are linearly independent.
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Check over 1 CPU day

The number of (currents, potential divergences):

ℓ
N

4 5 6 7

4 (1, 1) (1, 2) (1, 2) (1, 2)
6 (2, 2) (2, 5) (2, 6) (2, 6)
8 (4, 7) (4, 17) (4, 22) (4, 23)
10 (5, 18) (7, 50) (7, 69) (7, 75)

For N = 4, 2× 2 matrix
〈
T I
6V

J
5 σ
〉
is singular signalling W-algebra

with spin 6 [Blumenhagen, Flohr, Kliem, Nahm, Recknagel, Varnhagen; 91] .
For N > 4, all of the above lifts :).

Should determine conformal window non-perturbatively.

For N = 4, check if W-algebra is W(2, 6).

Consider SN breaking flows e.g. ZN as in 3d [LeClair, Ludwig, Mussardo; 97] .

Couple W[dn] minimal models [Dotsenko, Nguyen, Santachiara; 01] .
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