Simplifying Plasma Balls and Black Holes with Nonlinear Diffusion

Connor Behan

July 14, 2014

What is universal in AdS / CFT?

String theories (with CFT duals) form an infinite family:

- $AdS_5 \times \mathbb{S}^5$
- $AdS_4 \times \mathbb{CP}^3$
- $AdS_3 \times \mathbb{S}^3 \times \mathbb{T}^4$
- . . .

What is universal in AdS / CFT?

String theories (with CFT duals) form an infinite family:

- $AdS_5 \times \mathbb{S}^5$
- $AdS_4 \times \mathbb{CP}^3$
- $AdS_3 \times \mathbb{S}^3 \times \mathbb{T}^4$
- . . .

But many field theories have similar thermodynamics, e.g. $S \propto V^{\frac{1}{d+1}} E^{\frac{d}{d+1}}$ at high energies. Gravity sides cannot be completely different.

What is universal in AdS / CFT?

String theories (with CFT duals) form an infinite family:

- $AdS_5 \times \mathbb{S}^5$
- $AdS_4 \times \mathbb{CP}^3$
- $AdS_3 \times \mathbb{S}^3 \times \mathbb{T}^4$
- . . .

But many field theories have similar thermodynamics, e.g. $S \propto V^{\frac{1}{d+1}} E^{\frac{d}{d+1}}$ at high energies. Gravity sides cannot be completely different.

First look at $AdS_5 \times \mathbb{S}^5 \Leftrightarrow \mathcal{N} = 4$ Super Yang-Mills.

$$ds^{2} = -\left(1 + \frac{r^{2}}{L^{2}}\right)dt^{2} + \left(1 + \frac{r^{2}}{L^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega_{3}^{2}$$

$$ds^{2} = -\left(1 + \frac{r^{2}}{L^{2}}\right)dt^{2} + \left(1 + \frac{r^{2}}{L^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega_{3}^{2}$$
$$\approx -\frac{r^{2}}{L^{2}}dt^{2} + \frac{L^{2}}{r^{2}}dr^{2} + r^{2}d\Omega_{3}^{2}$$

$$\begin{split} ds^2 &= -\left(1 + \frac{r^2}{L^2}\right) dt^2 + \left(1 + \frac{r^2}{L^2}\right)^{-1} dr^2 + r^2 d\Omega_3^2 \\ &\approx -\frac{r^2}{L^2} dt^2 + \frac{L^2}{r^2} dr^2 + r^2 d\Omega_3^2 \\ &= p^{-1} \frac{r^2}{L^2} \left[-p dt^2 + p \frac{L^4}{r^2} dr^2 + p L^2 d\Omega_3^2 \right] \end{split}$$

$$ds^{2} = -\left(1 + \frac{r^{2}}{L^{2}}\right)dt^{2} + \left(1 + \frac{r^{2}}{L^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega_{3}^{2}$$

$$\approx -\frac{r^{2}}{L^{2}}dt^{2} + \frac{L^{2}}{r^{2}}dr^{2} + r^{2}d\Omega_{3}^{2}$$

$$= p^{-1}\frac{r^{2}}{L^{2}}\left[-pdt^{2} + p\frac{L^{4}}{r^{2}}dr^{2} + pL^{2}d\Omega_{3}^{2}\right]$$

For SYM on \mathbb{S}^3 with arbitrary radius R, $E_{\text{CFT}}R = E_{\text{AdS}}L$.

Gas of gravitons in AdS.

Gas of gravitons in AdS.

$$S = \left[rac{(d+1)^{d+1}d!\omega_d}{(2\pi d)^d}(s\zeta(d+1) + s^*\zeta^*(d+1))VE^d
ight]^{rac{1}{d+1}}$$

Gas of gravitons in AdS.

$$S = \left[\frac{(d+1)^{d+1} d! \omega_d}{(2\pi d)^d} (s\zeta(d+1) + s^*\zeta^*(d+1)) V E^d \right]^{\frac{1}{d+1}}$$

Use $s = s^* = 128$ and d = 9.

Gas of gravitons in AdS.

$$S = \left[\frac{(d+1)^{d+1} d! \omega_d}{(2\pi d)^d} (s\zeta(d+1) + s^*\zeta^*(d+1)) V E^d \right]^{\frac{1}{d+1}}$$

Use $s = s^* = 128$ and d = 9.

V has $\omega_3 L^3$ from the \mathbb{S}^3 and a piece like L^5 for AdS.

Worldsheets of arbitrarily massive strings.

Worldsheets of arbitrarily massive strings.

$$S = \beta_{\rm H} E$$

Worldsheets of arbitrarily massive strings.

$$S = \beta_{\rm H} E$$

$$\beta_{\rm H} = \pi \sqrt{\alpha'} \left(\sqrt{\frac{c}{6}} + \sqrt{\frac{\tilde{c}}{6}} \right)$$

Worldsheets of arbitrarily massive strings.

$$S = \beta_{\rm H} E$$

$$\beta_{\rm H} = \pi \sqrt{\alpha'} \left(\sqrt{\frac{c}{6}} + \sqrt{\frac{\tilde{c}}{6}} \right)$$

For Type IIB, $c = \tilde{c} = 12$.

Schwarzschild black hole of mass *E*:

$$-\left(1-rac{16\pi GE}{d(d-1)\omega_{d}r^{d-2}}
ight) dt^{2} + \left(1-rac{16\pi GE}{d(d-1)\omega_{d}r^{d-2}}
ight)^{-1}dr^{2}\dots$$

Schwarzschild black hole of mass *E*:

$$-\left(1 - \frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right) dt^2 + \left(1 - \frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right)^{-1} dr^2 \dots \\ -\left(1 - \frac{2\pi G_{10}E}{9\omega_9 r^7}\right) dt^2 + \left(1 - \frac{2\pi G_{10}E}{9\omega_9 r^7}\right)^{-1} dr^2 + r^2 d\Omega_8^2$$

Schwarzschild black hole of mass *E*:

$$\begin{split} -\left(1-\frac{16\pi GE}{d(d-1)\omega_{d}r^{d-2}}\right) & dt^{2} + \left(1-\frac{16\pi GE}{d(d-1)\omega_{d}r^{d-2}}\right)^{-1}dr^{2}\dots\\ & -\left(1-\frac{2\pi G_{10}E}{9\omega_{9}r^{7}}\right) & dt^{2} + \left(1-\frac{2\pi G_{10}E}{9\omega_{9}r^{7}}\right)^{-1}dr^{2} + r^{2}d\Omega_{8}^{2} \end{split}$$

Horizon radius in terms of energy \Rightarrow Area in terms of horizon radius $\Rightarrow S = \frac{A}{4G_{10}}$.

Do the same thing with $S = \frac{A}{4G_5}$ and

$$-\left(1+\frac{r^2}{L^2}-\frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right)dt^2+\left(1+\frac{r^2}{L^2}-\frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right)^{-1}dr^2$$

Do the same thing with $S = \frac{A}{4G_5}$ and

$$-\left(1 + \frac{r^2}{L^2} - \frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right) dt^2 + \left(1 + \frac{r^2}{L^2} - \frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right)^{-1} dr^2$$
$$-\left(1 + \frac{r^2}{L^2} - \frac{4\pi G_5 E}{3\omega_4 r^2}\right) dt^2 + \left(1 + \frac{r^2}{L^2} - \frac{4\pi G_5 E}{3\omega_4 r^2}\right) dr^2$$

Do the same thing with $S = \frac{A}{4G_5}$ and

$$-\left(1 + \frac{r^2}{L^2} - \frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right) dt^2 + \left(1 + \frac{r^2}{L^2} - \frac{16\pi GE}{d(d-1)\omega_d r^{d-2}}\right)^{-1} dr^2$$
$$-\left(1 + \frac{r^2}{L^2} - \frac{4\pi G_5 E}{3\omega_4 r^2}\right) dt^2 + \left(1 + \frac{r^2}{L^2} - \frac{4\pi G_5 E}{3\omega_4 r^2}\right) dr^2$$

Integrate \mathbb{S}^5 out of the Einstein-Hilbert action to get $G_5 = \frac{G_{10}}{G_{VM}I^5}$.

$$S = \begin{cases} 10 \left(\frac{2728}{9355}\pi^{8}\right)^{\frac{1}{10}} \left(\frac{ER}{9}\right)^{\frac{9}{10}} & ER \ll \lambda^{\frac{1}{4}} \\ 2\pi \left(\frac{4}{\lambda}\right)^{\frac{1}{4}} ER & \lambda^{\frac{1}{4}} \ll ER \ll \lambda^{-\frac{7}{4}} N^{2} \\ \frac{9}{4} \left(\frac{1890}{N^{2}}\right)^{\frac{1}{7}} \left(\frac{\pi ER}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^{2} \ll ER \ll N^{2} \\ \pi \sqrt{N} \left(\frac{4}{3} ER\right)^{\frac{3}{4}} & N^{2} \ll ER \end{cases}$$

$$S = \begin{cases} 10 \left(\frac{2728}{9355} \pi^8\right)^{\frac{1}{10}} \left(\frac{ER}{9}\right)^{\frac{9}{10}} & ER \ll \lambda^{\frac{1}{4}} \\ 2\pi \left(\frac{4}{\lambda}\right)^{\frac{1}{4}} ER & \lambda^{\frac{1}{4}} \ll ER \ll \lambda^{-\frac{7}{4}} N^2 \\ \frac{9}{4} \left(\frac{1890}{N^2}\right)^{\frac{1}{7}} \left(\frac{\pi ER}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^2 \ll ER \ll N^2 \\ \pi \sqrt{N} \left(\frac{4}{3} ER\right)^{\frac{3}{4}} & N^2 \ll ER \end{cases}$$

$$S = \begin{cases} 10 \left(\frac{2728}{9355} \pi^8\right)^{\frac{1}{10}} \left(\frac{ER}{9}\right)^{\frac{9}{10}} & ER \ll \lambda^{\frac{1}{4}} \\ 2\pi \left(\frac{4}{\lambda}\right)^{\frac{1}{4}} ER & \lambda^{\frac{1}{4}} \ll ER \ll \lambda^{-\frac{7}{4}} N^2 \\ \frac{9}{4} \left(\frac{1890}{N^2}\right)^{\frac{1}{7}} \left(\frac{\pi ER}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^2 \ll ER \ll N^2 \\ \pi \sqrt{N} \left(\frac{4}{3} ER\right)^{\frac{3}{4}} & N^2 \ll ER \end{cases}$$

$$S = \begin{cases} 10 \left(\frac{2728}{9355} \pi^8\right)^{\frac{1}{10}} \left(\frac{ER}{9}\right)^{\frac{9}{10}} & ER \ll \lambda^{\frac{1}{4}} \\ 2\pi \left(\frac{4}{\lambda}\right)^{\frac{1}{4}} ER & \lambda^{\frac{1}{4}} \ll ER \ll \lambda^{-\frac{7}{4}} N^2 \\ \frac{9}{4} \left(\frac{1890}{N^2}\right)^{\frac{1}{7}} \left(\frac{\pi ER}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^2 \ll ER \ll N^2 \\ \pi \sqrt{N} \left(\frac{4}{3} ER\right)^{\frac{3}{4}} & N^2 \ll ER \end{cases}$$

Use $L^4=4\pi g_s\alpha'^2N$, $G_5L^5=8\pi^3g_s^2\alpha'^4$ and $\lambda=4\pi g_sN$ from the correspondence.

$$S = \begin{cases} 10 \left(\frac{2728}{9355} \pi^8\right)^{\frac{1}{10}} \left(\frac{ER}{9}\right)^{\frac{9}{10}} & ER \ll \lambda^{\frac{1}{4}} \\ 2\pi \left(\frac{4}{\lambda}\right)^{\frac{1}{4}} ER & \lambda^{\frac{1}{4}} \ll ER \ll \lambda^{-\frac{7}{4}} N^2 \\ \frac{9}{4} \left(\frac{1890}{N^2}\right)^{\frac{1}{7}} \left(\frac{\pi ER}{9}\right)^{\frac{8}{7}} & \lambda^{-\frac{7}{4}} N^2 \ll ER \ll N^2 \\ \pi \sqrt{N} \left(\frac{4}{3} ER\right)^{\frac{3}{4}} & N^2 \ll ER \end{cases}$$

Theory has confinement but it vanishes as $R \to \infty$.

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + dz^{2} + dy^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + dz^{2} + dy^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + dz^{2} + d\theta^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + dz^{2} + d\theta^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right)dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1}dz^{2} + d\theta^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1}dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)d\theta^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + dz^{2} + d\theta^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right)dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1}dz^{2} + d\theta^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1}dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)d\theta^{2} + dx_{i}dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right) dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right) d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right) dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right) d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right) dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right) d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right) dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right) d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right) dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right) d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-\left(1 - \frac{z_{0}^{d}}{z^{d}}\right) dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + d\theta^{2} + dx_{i} dx^{i} \right]$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right)^{-1} dz^{2} + \left(1 - \frac{z_{0}^{d}}{z^{d}}\right) d\theta^{2} + dx_{i} dx^{i} \right]$$

AdS soliton has confined glueballs, AdS black hole has deconfined plasma.

Try to make these objects in a thermodynamic model where there are two scales:

There are $\rho(n_1)\rho(n_2)$ ways for this to happen. Consider $\rho(n)=Ae^{Bn^{\alpha}}$.

There are $\rho(n_1)\rho(n_2)$ ways for this to happen. Consider $\rho(n) = Ae^{Bn^{\alpha}}$

Diffusion	Clustering
$\frac{\rho(n_1-1)\rho(n_2+1)>\rho(n_1)\rho(n_2)}{\alpha<1}$	$\frac{\rho(n_1+1)\rho(n_2-1)>\rho(n_1)\rho(n_2)}{\alpha>1}$

There are $\rho(n_1)\rho(n_2)$ ways for this to happen. Consider $\rho(n) = Ae^{Bn^{\alpha}}$.

Diffusion	Clustering
$\rho(n_1-1)\rho(n_2+1) > \rho(n_1)\rho(n_2)$	$\rho(n_1+1)\rho(n_2-1) > \rho(n_1)\rho(n_2)$
lpha < 1	lpha > 1

- $\rho(E)$ log-concave
- S(E) concave
- $\beta(E)$ decreasing

The master equation:

$$\frac{\partial P(\lbrace n_r \rbrace)}{\partial t} = \sum_{\lbrace n_r' \rbrace} P(\lbrace n_r' \rbrace) W_{\lbrace n_r' \rbrace \to \lbrace n_r \rbrace} - P(\lbrace n_r \rbrace) W_{\lbrace n_r \rbrace \to \lbrace n_r' \rbrace}
\frac{\partial \langle n_a \rangle}{\partial t} = \sum_{k \neq 0} \sum_b k W_{(n_a, n_b) \to (n_a + k, n_b - k)}$$

The master equation:

$$\frac{\partial P(\lbrace n_r \rbrace)}{\partial t} = \sum_{\lbrace n_r' \rbrace} P(\lbrace n_r' \rbrace) W_{\lbrace n_r' \rbrace \to \lbrace n_r \rbrace} - P(\lbrace n_r \rbrace) W_{\lbrace n_r \rbrace \to \lbrace n_r' \rbrace}$$

$$\frac{\partial \langle n_a \rangle}{\partial t} = \sum_{k \neq 0} \sum_b k W_{(n_a, n_b) \to (n_a + k, n_b - k)}$$

We want an equilibrium state to be:

$$P(\lbrace n_r \rbrace) = \frac{1}{Z} \exp(-\beta E) \prod_{r} \rho(n_r)$$

The master equation:

$$\frac{\partial P(\lbrace n_r \rbrace)}{\partial t} = \sum_{\lbrace n_r' \rbrace} P(\lbrace n_r' \rbrace) W_{\lbrace n_r' \rbrace \to \lbrace n_r \rbrace} - P(\lbrace n_r \rbrace) W_{\lbrace n_r \rbrace \to \lbrace n_r' \rbrace}$$

$$\frac{\partial \langle n_a \rangle}{\partial t} = \sum_{k \neq 0} \sum_b k W_{(n_a, n_b) \to (n_a + k, n_b - k)}$$

We want an equilibrium state to be:

$$P(\lbrace n_r\rbrace) = \frac{1}{Z} \exp(-\beta E) \prod_r \rho(n_r)$$

By detailed balance and locality:

$$W_{(n_a,n_b)\to(n_a+k,n_b-k)} = \begin{cases} C\left(\frac{n_a+n_b}{2}\right)\rho(n_a)\rho(n_b) & \text{n.n.} \\ 0 & \text{otherwise} \end{cases}$$

Continuum limit: $n_a + k$ becomes $E(x) + \epsilon$, $n_b - k$ becomes $E(x + \delta) - \epsilon$. Take the leading term for $\delta, \epsilon \to 0$.

Continuum limit: $n_a + k$ becomes $E(x) + \epsilon$, $n_b - k$ becomes $E(x + \delta) - \epsilon$. Take the leading term for $\delta, \epsilon \to 0$.

$$\frac{\partial E}{\partial t} = -\delta^2 \epsilon^2 \partial_i \left(C(E) \rho^2(E) \partial_i \frac{\mathsf{d} \log \rho(E)}{\mathsf{d} E} \right)$$
$$= -\delta^2 \epsilon^2 \partial_i \left(C(E) \rho^2(E) \partial_i \beta(E) \right)$$

Continuum limit: $n_a + k$ becomes $E(x) + \epsilon$, $n_b - k$ becomes $E(x + \delta) - \epsilon$. Take the leading term for $\delta, \epsilon \to 0$.

$$\frac{\partial E}{\partial t} = -\delta^2 \epsilon^2 \partial_i \left(C(E) \rho^2(E) \partial_i \frac{\mathsf{d} \log \rho(E)}{\mathsf{d} E} \right)$$
$$= -\delta^2 \epsilon^2 \partial_i \left(C(E) \rho^2(E) \partial_i \beta(E) \right)$$

For small fluctuations this PDE is:

- Heat equation for lpha < 1
- Reverse heat equation for lpha > 1
- Static for $\alpha = 1$

Use high energies where the model is most effective.

Use high energies where the model is most effective. Use Neumann boundary conditions to conserve energy.

$$\frac{\partial E}{\partial t} = -\partial_i \left(C(E) \rho^2(E) \partial_i \beta(E) \right)$$

$$\frac{\partial E}{\partial t} = -\partial_i \left(C(E) \rho^2(E) \partial_i \beta(E) \right)$$
$$= -\Delta \tilde{\beta}(E)$$

Redefine
$$\tilde{\beta}'(E) = C(E)\rho^2(E)\beta'(E)$$
 or just assume $C(E) = \rho^{-2}(E)$.

$$\frac{\partial E}{\partial t} = -\partial_i \left(C(E) \rho^2(E) \partial_i \beta(E) \right)$$
$$= -\Delta \tilde{\beta}(E)$$

Redefine $\tilde{\beta}'(E) = C(E)\rho^2(E)\beta'(E)$ or just assume $C(E) = \rho^{-2}(E)$.

$$\frac{\partial E}{\partial t} = -\partial_i \left(C(E) \rho^2(E) \partial_i \beta(E) \right)$$
$$= -\Delta \tilde{\beta}(E)$$

Redefine $\tilde{\beta}'(E) = C(E)\rho^2(E)\beta'(E)$ or just assume $C(E) = \rho^{-2}(E)$. Eliminate the $E^{\frac{1}{7}}$ part of β to make it a decreasing function.

$$\frac{\partial E}{\partial t} = -\partial_i \left(C(E) \rho^2(E) \partial_i \beta(E) \right)$$
$$= -\Delta \tilde{\beta}(E)$$
$$= \Delta \Phi(E)$$

Redefine $\tilde{\beta}'(E) = C(E)\rho^2(E)\beta'(E)$ or just assume $C(E) = \rho^{-2}(E)$. Eliminate the $E^{\frac{1}{7}}$ part of β to make it a decreasing function.

Concentration Comparison Theorem: For the same initial condition, the equations

$$\frac{\partial E}{\partial t} = \begin{cases} \Delta \Phi_1(E) \\ \Delta \Phi(E) \\ \Delta \Phi_2(E) \end{cases}$$

satisfy $T_1 < T < T_2$.

With piecewise linear Φ , this has an exact solution:

$$E(x,t) = egin{cases} E_{\mathrm{F}} & |x| < a - 2\sqrt{t}I \ rac{E_{\mathrm{H}}}{1 + \mathrm{erf}(I)} \left(1 + \mathrm{erf}\left(rac{a - |x|}{2\sqrt{t}}
ight)
ight) & |x| > a - 2\sqrt{t}I \end{cases}$$

where $\sqrt{\pi} I e^{I^2} (1 + \operatorname{erf}(I)) = \frac{E_{\mathrm{H}}}{E_{\mathrm{F}} - E_{\mathrm{H}}}$.

Use this to find the time for the peak to reach $E_{\rm H}$.

$$egin{split} rac{\pi d}{4(1-lpha)eta\left(E_{\min}
ight)}rac{E_{\min}}{E_{
m H}^2}\left[aE_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 < T < \ rac{\pi d}{4(1-lpha)eta\left(E_{\min}
ight)}rac{E_{\min}^{lpha-1}}{E_{
m H}^lpha}\left[aE_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 \end{split}$$

Use this to find the time for the peak to reach $E_{\rm H}$.

$$egin{aligned} rac{\pi d}{4(1-lpha)eta\left(\mathcal{E}_{\min}
ight)}rac{\mathcal{E}_{\min}}{\mathcal{E}_{
m H}^2}\left[a\mathcal{E}_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 < \mathcal{T} < \ rac{\pi d}{4(1-lpha)eta\left(\mathcal{E}_{\min}
ight)}rac{\mathcal{E}_{\min}^{lpha-1}}{\mathcal{E}_{
m H}^{lpha}}\left[a\mathcal{E}_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 \end{aligned}$$

Recall that $\Phi_1'(0)$ is based on E_{\min} , $\Phi_2'(0)$ is based on E_{H} .

Use this to find the time for the peak to reach $E_{\rm H}$.

$$egin{aligned} rac{\pi d}{4(1-lpha)eta\left(E_{\min}
ight)}rac{E_{\min}}{E_{
m H}^2}\left[aE_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 < T < \ rac{\pi d}{4(1-lpha)eta\left(E_{\min}
ight)}rac{E_{\min}^{lpha-1}}{E_{
m H}^2}\left[aE_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 \end{aligned}$$

Recall that $\Phi_1'(0)$ is based on E_{\min} , $\Phi_2'(0)$ is based on E_{H} .

Use this to find the time for the peak to reach $E_{\rm H}$.

$$egin{aligned} rac{\pi d}{4(1-lpha)eta\left(\mathcal{E}_{\min}
ight)}rac{\mathcal{E}_{\min}}{\mathcal{E}_{
m H}^2}\left[\mathsf{a}\mathcal{E}_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 < \mathcal{T} < \ rac{\pi d}{4(1-lpha)eta\left(\mathcal{E}_{\min}
ight)}rac{\mathcal{E}_{\min}^{lpha-1}}{\mathcal{E}_{
m H}^lpha}\left[\mathsf{a}\mathcal{E}_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 \end{aligned}$$

Recall that
$$\Phi_1'(0)$$
 is based on E_{\min} , $\Phi_2'(0)$ is based on E_{H} . For $C(E)=1$, this becomes $\frac{E_{\min}^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\exp\left(-\frac{2\beta(E_{\min})}{\alpha}\frac{E_{\mathrm{H}}^{\alpha}}{E_{\min}^{\alpha-1}}\right)$ if $E_{\mathrm{H}}<\left[\frac{2-\alpha}{2\beta(E_{\min})E_{\min}^{1-\alpha}}\right]^{\frac{1}{\alpha}}$.

Use this to find the time for the peak to reach $E_{\rm H}$.

$$\begin{split} &\frac{\pi d}{4(1-\alpha)\beta\left(E_{\min}\right)}\frac{E_{\min}}{E_{\mathrm{H}}^{2}}\left[aE_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2} < T < \\ &\frac{\pi d}{4(1-\alpha)\beta\left(E_{\min}\right)}\frac{E_{\min}^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\left[aE_{\mathrm{F}}\left(\frac{d-1}{d}\right)^{d-1}\right]^{2} \end{split}$$

Recall that
$$\Phi_1'(0)$$
 is based on E_{\min} , $\Phi_2'(0)$ is based on E_{H} . For $C(E)=1$, this becomes $\frac{E_{\min}^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\exp\left(-\frac{2\beta(E_{\min})}{\alpha}\frac{E_{\mathrm{H}}^{\alpha}}{E_{\min}^{\alpha-1}}\right)$ if $E_{\mathrm{H}}<\left[\frac{2-\alpha}{2\beta(E_{\min})E_{\min}^{1-\alpha}}\right]^{\frac{1}{\alpha}}$. If not, $\left(\frac{2-\alpha}{2}\right)^{\frac{2}{\alpha}-\alpha}\beta(E_{\min})^{1-\frac{2}{\alpha}}\frac{E_{\min}^{2-\frac{2}{\alpha}}}{E_{\min}^{2}}e^{1-\frac{2}{\alpha}}$.

Use this to find the time for the peak to reach $E_{\rm H}$.

$$egin{aligned} rac{\pi d}{4(1-lpha)eta\left(\mathcal{E}_{\min}
ight)}rac{\mathcal{E}_{\min}}{\mathcal{E}_{
m H}^2}\left[\mathsf{a}\mathcal{E}_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 < T < \ rac{\pi d}{4(1-lpha)eta\left(\mathcal{E}_{\min}
ight)}rac{\mathcal{E}_{\min}^{lpha-1}}{\mathcal{E}_{
m H}^lpha}\left[\mathsf{a}\mathcal{E}_{
m F}\left(rac{d-1}{d}
ight)^{d-1}
ight]^2 \end{aligned}$$

Recall that
$$\Phi_1'(0)$$
 is based on E_{\min} , $\Phi_2'(0)$ is based on E_{H} . For $C(E)=1$, this becomes $\frac{E_{\min}^{\alpha-1}}{E_{\mathrm{H}}^{\alpha}}\exp\left(-\frac{2\beta(E_{\min})}{\alpha}\frac{E_{\mathrm{H}}^{\alpha}}{E_{\min}^{\alpha-1}}\right)$ if $E_{\mathrm{H}}<\left[\frac{2-\alpha}{2\beta(E_{\min})E_{\min}^{1-\alpha}}\right]^{\frac{1}{\alpha}}$. If not, $\left(\frac{2-\alpha}{2}\right)^{\frac{2}{\alpha}-\alpha}\beta(E_{\min})^{1-\frac{2}{\alpha}}\frac{E_{\min}^{2-\frac{2}{\alpha}}}{E_{\mathrm{H}}^{2}}e^{1-\frac{2}{\alpha}}$. Note that $T=O(N^4)\neq O(N^2)$.

Large $N \Rightarrow$ wide domain \Rightarrow tiny $E_{\min} \Rightarrow$ trivial bounding functions.

Large $N \Rightarrow$ wide domain \Rightarrow tiny $E_{\min} \Rightarrow$ trivial bounding functions.

Bounds are not very constraining.

- Bounds are not very constraining.
- This problem is purely mathematical.

- Bounds are not very constraining.
- This problem is purely mathematical.
- Time in d=2 is much shorter than in d=1.

- Bounds are not very constraining.
- This problem is purely mathematical.
- Time in d = 2 is much shorter than in d = 1.
- There is probably no way around this.

Consider infinite volume $\frac{\partial E}{\partial t} = \Delta \Phi(E)$ where $\Phi(E) = \frac{1}{\alpha - 1} E^{\alpha - 1}$.

Consider infinite volume $\frac{\partial E}{\partial t} = \Delta \Phi(E)$ where $\Phi(E) = \frac{1}{\alpha - 1} E^{\alpha - 1}$. Problem is intuitive for $\alpha > 1$ but we want $\alpha = \frac{9}{10}$.

Consider infinite volume $\frac{\partial E}{\partial t} = \Delta \Phi(E)$ where $\Phi(E) = \frac{1}{\alpha - 1} E^{\alpha - 1}$. Problem is intuitive for $\alpha > 1$ but we want $\alpha = \frac{9}{10}$. Barenblatt solution for Dirac delta initial condition:

$$E(x,t) = \left[\frac{\left(\frac{4}{2-\alpha} - 2d\right)t}{|x|^2 + Bt^{\frac{2}{2-d(2-\alpha)}}}\right]^{\frac{1}{2-\alpha}}$$

Consider infinite volume $\frac{\partial E}{\partial t} = \Delta \Phi(E)$ where $\Phi(E) = \frac{1}{\alpha - 1} E^{\alpha - 1}$. Problem is intuitive for $\alpha > 1$ but we want $\alpha = \frac{9}{10}$. Barenblatt solution for Dirac delta initial condition:

$$E(x,t) = \left[\frac{\left(\frac{4}{2-\alpha} - 2d\right)t}{|x|^2 + Bt^{\frac{2}{2-d(2-\alpha)}}}\right]^{\frac{1}{2-\alpha}}$$

Only well defined if $\frac{4}{2-\alpha} - 2d > 0$. Therefore $\alpha > 2 - \frac{2}{d}$ and we can only have d = 1 in our case!

Allow all conserved quantities to perform a random walk.

Allow all conserved quantities to perform a random walk. Transition rates should be based on

$$\rho(E; P_1, \ldots, P_d)$$

where $1, \ldots, d$ are large directions.

Allow all conserved quantities to perform a random walk. Transition rates should be based on

$$\rho(E; P_1, \ldots, P_d)$$

where $1, \ldots, d$ are large directions. By analogy,

$$W\left(\left[\begin{array}{cc} E(x) & E(x+\delta e) \\ P(x) & P(x+\delta e) \end{array}\right] \to \left[\begin{array}{cc} E(x)+\epsilon & E(x+\delta e)-\epsilon \\ P(x)+\epsilon e' & P(x+\delta e)-\epsilon e' \end{array}\right]\right) =$$

$$C\left(\frac{E(x) + E(x + \delta e)}{2}; \frac{P(x) + P(x + \delta e)}{2}\right)$$
$$\rho(E(x); P(x))\rho(E(x + \delta e); P(x + \delta e))\delta_{e,e'}$$

$$\frac{\partial E}{\partial t} = 0$$

$$\frac{\partial P_i}{\partial t} = -\epsilon \delta \partial_i (C \rho^2)$$

$$\frac{\partial E}{\partial t} = -\epsilon^2 \delta^2 \partial_i \left(C \rho^2 \partial_i \frac{\partial \log \rho}{\partial E} \right)$$
$$\frac{\partial P_i}{\partial t} = -\epsilon \delta \partial_i (C \rho^2)$$

$$\begin{split} \frac{\partial E}{\partial t} &= -\epsilon^2 \delta^2 \partial_i \left(C \rho^2 \partial_i \frac{\partial \log \rho}{\partial E} \right) \\ \frac{\partial P_i}{\partial t} &= -\epsilon \delta \partial_i (C \rho^2) \\ -\frac{\epsilon^3 \delta}{d+2} \partial_I \left[C \rho^2 \left(\frac{\partial^2 \log \rho}{\partial E^2} \delta_{jk} + \frac{\partial^2 \log \rho}{\partial P_j \partial P_k} \right) \right] (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \end{split}$$

$$\begin{split} &\frac{\partial E}{\partial t} = -\epsilon^2 \delta^2 \partial_i \left(C \rho^2 \partial_i \frac{\partial \log \rho}{\partial E} \right) \\ &\frac{\partial P_i}{\partial t} = -\epsilon \delta \partial_i (C \rho^2) \\ &- \frac{\epsilon^3 \delta}{d+2} \partial_l \left[C \rho^2 \left(\frac{\partial^2 \log \rho}{\partial E^2} \delta_{jk} + \frac{\partial^2 \log \rho}{\partial P_j \partial P_k} \right) \right] \left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) \\ &- \frac{\epsilon^2 \delta^2}{d+2} \partial_k \left(C \rho^2 \partial_l \frac{\partial \log \rho}{\partial P_j} \right) \left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) \end{split}$$

$$\frac{\partial E}{\partial t} = -\epsilon^2 \delta^2 \partial_i \left(C \rho^2 \partial_i \frac{\partial \log \rho}{\partial E} \right)
\frac{\partial P_i}{\partial t} = -\epsilon \delta \partial_i (C \rho^2)
- \frac{\epsilon^3 \delta}{d+2} \partial_l \left[C \rho^2 \left(\frac{\partial^2 \log \rho}{\partial E^2} \delta_{jk} + \frac{\partial^2 \log \rho}{\partial P_j \partial P_k} \right) \right] (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})
- \frac{\epsilon^2 \delta^2}{d+2} \partial_k \left(C \rho^2 \partial_l \frac{\partial \log \rho}{\partial P_j} \right) (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})
- \frac{\epsilon \delta^3}{d+2} [5 \text{ more lines}]$$

To "first" order:

$$\begin{split} &\frac{\partial E}{\partial t} = -\epsilon^2 \delta^2 \partial_i \left(C \rho^2 \partial_i \frac{\partial \log \rho}{\partial E} \right) \\ &\frac{\partial P_i}{\partial t} = -\epsilon \delta \partial_i (C \rho^2) \\ &- \frac{\epsilon^3 \delta}{d+2} \partial_l \left[C \rho^2 \left(\frac{\partial^2 \log \rho}{\partial E^2} \delta_{jk} + \frac{\partial^2 \log \rho}{\partial P_j \partial P_k} \right) \right] (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \\ &- \frac{\epsilon^2 \delta^2}{d+2} \partial_k \left(C \rho^2 \partial_l \frac{\partial \log \rho}{\partial P_j} \right) (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \\ &- \frac{\epsilon \delta^3}{d+2} \left[5 \text{ more lines} \right] \end{split}$$

Numerics are difficult because of expressions for $\rho(E; P)$.

Hydrodynamic equations from

$$\partial_{\mu}T^{\mu\nu}=0$$

consist of the continuity equation and Navier-Stokes equations.

Hydrodynamic equations from

$$\partial_{\mu}T^{\mu\nu}=0$$

consist of the continuity equation and Navier-Stokes equations. Promote T, μ , u^{μ} of an equilibrium thermal state to slowly varrying functions.

Hydrodynamic equations from

$$\partial_{\mu}T^{\mu\nu}=0$$

consist of the continuity equation and Navier-Stokes equations. Promote \mathcal{T} , μ , u^μ of an equilibrium thermal state to slowly varrying functions.

Constitutive relations give all possible terms in $\mathcal{T}^{\mu\nu}$ from effective field theory methods

- 0 derivatives "ideal hydrodynamics"
- 1 derivative "dissipative hydrodynamics"
- . . .

and η , ζ are transport coefficients.

Hydrodynamic equations from

$$\partial_{\mu}T^{\mu\nu}=0$$

consist of the continuity equation and Navier-Stokes equations. Promote \mathcal{T} , μ , u^μ of an equilibrium thermal state to slowly varrying functions.

Constitutive relations give all possible terms in $\mathcal{T}^{\mu\nu}$ from effective field theory methods

- 0 derivatives "ideal hydrodynamics"
- 1 derivative "dissipative hydrodynamics"
- . . .

and η , ζ are transport coefficients.

There is no way $\frac{\partial E}{\partial t} = -\epsilon^2 \delta^2 \partial_i \left(C \rho^2 \partial_i \frac{\partial \log \rho}{\partial E} \right)$ will linearize to $\frac{\partial E}{\partial t} = \partial_i P_i$.

• Toy models for holographic gauge theories reveal a surprisingly rich structure.

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}$, E, $E^{\frac{8}{7}}$, $E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}$, E, $E^{\frac{8}{7}}$, $E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}$, E, $E^{\frac{8}{7}}$, $E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.
- In all dimensions, decay time bounds are rigorous but not the most useful.

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}$, E, $E^{\frac{8}{7}}$, $E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.
- In all dimensions, decay time bounds are rigorous but not the most useful.
- Some parameters like ϵ , δ and C(E) remain unknown.

- Toy models for holographic gauge theories reveal a surprisingly rich structure.
- Using SYM entropy with phases $E^{\frac{9}{10}}$, E, $E^{\frac{8}{7}}$, $E^{\frac{3}{4}}$, we saw plasma balls dual to black holes.
- The model is nicest in one dimension.
- In all dimensions, decay time bounds are rigorous but not the most useful.
- Some parameters like ϵ , δ and C(E) remain unknown.
- Thanks to Klaus Larjo, Nima Lashkari, Brian Swingle and Mark Van Raamsdonk... and all of you.