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String theories (with CFT duals) form an infinite family:
e AdSs x S°
o AdS; x CP?
o AdS; x $3 x T*
o ...
But many field theories have similar thermodynamics, e.g.

1 d
S o« V@1 Ed+ at high energies. Gravity sides cannot be
completely different.

First look at AdSs x S® < N = 4 Super Yang-Mills.
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2 2\ 1
ds? = <1+L2> dt2+(1+L2) dr® + r’d3

L?
_?dt + —dr + r?dQ3
1 2 2 L 2 2 2

Q

For SYM on S? with arbitrary radius R, EcprR = Eagsl.
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Gauge theory with one scale

Gas of gravitons in AdS.

dt1 1
s— | +(;3T;)dd!”d (sC(d +1) + s*¢*(d + 1)) VE®

Use s =s* =128 and d = 9.
V has wsl3? from the S3 and a piece like L? for AdS.
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Gauge theory with one scale

Worldsheets of arbitrarily massive strings.

S =

BuE
By = m/o <\/g+ \/g)

For Type IIB, c = ¢ = 12.
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Schwarzschild black hole of mass E:

16w GE

167 GE -1
—(1- 2 1— 2.
( d(d = l)wdrd—2> e+ ( d(d = l)wdrd_2> dr

21 GioE 2rGoE\ 2, 2,192
—(1- dt? 1-— d dQ2
( Ywor? ) N ( 9wor? T

Horizon radius in terms of energy = Area in terms of horizon

- _ A
radius = S = T
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Do the same thing with S = 4—25 and

r2 167 GE ) 2 167 GE o
B (1 TR - 1)wdrd2> ar (1 T2 A - 1)wdrd2> ar

r2 47TG5E r2 47TG5E
1+ - d? + (1+ 5 — dr?
< + L2 3(4}41’2 > + < + L2 3&)4/’2 > d

Integrate S° out of the Einstein-Hilbert action to get Gs = 6w20L5'
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Gauge theory with one scale

Use L* = 4rgsa?N, GsL° = 8m3g2a’ and \ = 4mgsN from the
correspondence.

10 (228,8) 0 (ERYT  ER « A

9355
£ 1 7
s )2 (3)* ER A € ER < A3 N?
= 1 8
3 R)7 (=§8) ATTN? < ER < N2
/N (3ER)* N? < ER

Theory has confinement
but it vanishes as R — oo.
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Gauge theory with two scales

2 L2 Zd 2 Zd -1 .
ds == |- (1—23,> dt® + (1—2‘;> dz> + d6? + dx;dx’

12 dy\ 1 d )
ds? — - [—dt2 4 (1 _ jg,) dz? + (1 _ j;) do? + dx,-dx’]

AdS soliton has confined
glueballs, AdS black hole
has deconfined plasma.
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E

Try to make these objects in a thermodynamic model where there

are two scales:
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12

There are p(n1)p(n2) ways for this to happen. Consider
p(n) = AeBm.
Diffusion ‘ Clustering

p(n = 1)p(nz2 +1) > p(m)p(n2) | p(n1+1)p(n2 — 1) > p(n1)p(n2)
a<l a>1
e p(E) log-concave

S(E) concave
e [(E) decreasing
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Deriving the model
The master equation:

oP ne
(8{1“}) = D PUMDWinyostny = PURHDWin ooy
{nt}
0 (n,
<8t> = szw(na,nb)%(na"rkmb_k)
k#0 b

We want an equilibrium state to be:
P({n}) = fexp —BE) Hp nr)

By detailed balance and locality:

C ("5"2) p(na)p(ny) nom.
W(na,nb)—>(n3+k7nb_k) — {0 ( 2 )

otherwise
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Deriving the model

Continuum limit: n, + k becomes E(x) + ¢, np — k becomes
E(x + J) — €. Take the leading term for d,e — 0.

ot dE
— 5220, (C(E)p*(E)0:B(E))

0F _ _pep, <C(E)p2(E)8,-d|ng(E)>

For small fluctuations this PDE is:
e Heat equation for a < 1
e Reverse heat equation for @ > 1
e Static fora=1
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Deriving the model

0
sgn(x) * log(1 + x)

Use high energies where the model is most effective.
Use Neumann boundary conditions to conserve energy.
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E)p*(E)0;(E))

Redefine §/(E) = C(E)p?(E)S'(E ) or just assume C(E) = p~2(E).
Eliminate the £7 part of B to make it a decreasing function.




Nonlinear diffusion




Nonlinear diffusion




Nonlinear diffusion




Nonlinear diffusion

L. L
Concentration Comparison Theorém: For the same initial
condition, the equations

o [BE)
55 = | A(E)
Ad,(E)

satisfy T1 < T < Ta.
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Nonlinear diffusion

-a a
| 1 |
X

With piecewise linear ®, this has an exact solution:

E( ) EF |X| < a—2ﬁl
x,t) =
Herf(,) (1 +erf( )) x| > a—2Vtl

where /7le!” (1 + erf(1)) = EFE,HEH-
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Nonlinear diffusion

Use this to find the time for the peak to reach Ey.
wd Emin

d_1\91 2
41— )8 (Emin) E2 aEF( d >

d ol d—1\%1
— |aEp (| ——
4(1 - O‘)/B (Ernin) Eﬁ' d

Recall that ®/(0) is based on Epn, ®5(0) is based on Ey.
— ' Ein 28(Emin) ES \
For C(E) = 1, this becomes =i exp <_77) i
H

o Eafl

min

<T<

1

2—« o
En < [25(Emin E;;:] ‘
2

2 -
If not, (277&) o B(Emin)lié Enl;-i2na elié-

Note that T — O(N*) # O(N2).
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functions.




46050

46000

45950

45900

45850

45800

Numerical test

115.0

1145

114.0

135

13.0

125

112.0

115

E




46050

46000

45950

45900

45850

45800

Numerical test

1: d=2:

116.0

115.5

. 115.0

1145

114.0

-

135

13.0

125

112.0

115

Ey

e Bounds are not very constraining.




d

46050

46000

45950

45900

45850

45800

Numerical test

d=2:

116.0

115.5

. 115.0

1145

114.0

135

13.0

125

112.0

115

e Bounds are not very constraining.

e This problem is purely mathematical.




d

46050

46000

45950

45900

45850

45800

Numerical test

d=2:

116.0

115.5

. 115.0

1145

114.0

135

13.0

125

112.0

115

e Bounds are not very constraining.
e This problem is purely mathematical.

e Time in d = 2 is much shorter than in d = 1.




d

46050

46000

45950

45900

45850

45800

Numerical test

d=2:

116.0
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1145

114.0

135

13.0

125
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e Bounds are not very constraining.
e This problem is purely mathematical.
e Time in d = 2 is much shorter than in d = 1.

e There is probably no way around this.
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Numerical test

Consider infinite vqume = A®(E) where ®(E) = ﬁEO‘_l.

Problem is intuitive for « > 1 but we want o« = %.

Barenblatt solution for Dirac delta initial condition:

E(x,t) = <ﬂ ~ 2d> B

IX[2 + Btz

Only well defined if 5%~ —2d > 0. Therefore & > 2 — 2 and we
can only have d =1 in our case!
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Changing the model

Allow all conserved quantities to perform a random walk.
Transition rates should be based on

p(E; P1,..., Pq)

where 1,...,d are large directions.
By analogy,

(LR Pt | | e Pisade e ]) =

2 ' 2
p(E(x); P(x))p(E(x + de); P(x + de))de e

c <E(x) + E(x+de) P(x)+ P(x+ 5e)>



Changing the model

To “first” order:
OF _
ot

OP,' - . 2
or E(Sal(cp)

0




Changing the model

To “first” order:

6£__22' 2'3|ogp
5 = 658,<Cp8, IE
OP;

= —e00;(Cp?)

ot



Changing the model

To “first” order:

8E__22' 2'8|ogp
Friaia 6°0; <Cp 0; 9E
oP; 2
5t = —e00;(Cp?)

) , (0%logp 0?log p
—d+28, [C,o < 9E2 Sjk + anaPkﬂ (050Kt + Sincdjt + dirdjic)



Changing the model

To “first” order:

OF _ 259, <Cp2a,-3'°gp )

ot OE
oP;
ot

= —€0;(Cp?)

) 0?log p 0?log p
Cp? ;

d+28'[ P ( 9E2 " T 5P.ap,

252 dlogp

OP;

>] (5ij5kl + 5ik5jl + 5il5jk)

€

d+2

Ok <Cp28/ > (0ij6k1 + Oikj1 + 6irdjxc)



Changing the model

To “first” order:
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Changing the model

To “first” order:

OE 2820, <Cp2(9,-8|0gp>

at OE
63/:: = —e00;(Cp?)

) , (0%logp 0?log p
—d+23/ Cp 5E2 Sjk + 9P,0Ps (050Kt + Sincdjt + dirdjic)

€262 dlo
o 28k <Cp28/ an.p> (0ij6k1 + Oikj1 + 6irdjxc)

J
3

_dej- 5 [5 more lines]

Numerics are difficult because of expressions for p(E; P).
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Changing the model

Hydrodynamic equations from
OuTH =0

consist of the continuity equation and Navier-Stokes equations.
Promote T, pu, u* of an equilibrium thermal state to slowly
varrying functions.

Constitutive relations give all possible terms in T from effective
field theory methods

e 0 derivatives “ideal hydrodynamics”
e 1 derivative “dissipative hydrodynamics”
o ...
and 7, (¢ are transport coefficients.
There is no way %—’f = —€2020; (Cp%),-%) will linearize to

E
9E — o;P;.
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